Evaluating Algo Trading Strategies

Evaluating Algo Trading Strategies
Evaluating Algo Trading Strategies

The first, and arguably most obvious consideration is whether you actually understand the strategy. Would you be able to explain the strategy concisely or does it require a string of caveats and endless parameter lists? In addition, does the strategy have a good, solid basis in reality? For instance, could you point to some behavioural rationale or fund structure constraint that might be causing the pattern(s) you are attempting to exploit? Would this constraint hold up to a regime change, such as a dramatic regulatory environment disruption? Does the strategy rely on complex statistical or mathematical rules? Does it apply to any financial time series or is it specific to the asset class that it is claimed to be profitable on? You should constantly be thinking about these factors when evaluating new trading methods, otherwise you may waste a significant amount of time attempting to backtest and optimise unprofitable strategies.

Once you have determined that you understand the basic principles of the strategy you need to decide whether it fits with your aforementioned personality profile. This is not as vague a consideration as it sounds! Strategies will differ substantially in their performance characteristics. There are certain personality types that can handle more significant periods of drawdown, or are willing to accept greater risk for larger return. Despite the fact that we, as quants, try and eliminate as much cognitive bias as possible and should be able to evaluate a strategy dispassionately, biases will always creep in. Thus we need a consistent, unemotional means through which to assess the performance of strategies. Here is the list of criteria that I judge a potential new strategy by:

  • MethodologyIs the strategy momentum based, mean-reverting, market-neutral, directional? Does the strategy rely on sophisticated (or complex!) statistical or machine learning techniques that are hard to understand and require a PHD in statistics to grasp? Do these techniques introduce a significant quantity of parameters, which might lead to optimisation bias? Is the strategy likely to withstand a regime change (i.e. potential new regulation of financial markets)?
  • Sharpe Ratio – The Sharpe ratio heuristically characterises the reward/risk ratio of the strategy. It quantifies how much return you can achieve for the level of volatility endured by the equity curve. Naturally, we need to determine the period and frequency that these returns and volatility (i.e. standard deviation) are measured over. A higher frequency strategy will require greater sampling rate of standard deviation, but a shorter overall time period of measurement, for instance.
  • Leverage – Does the strategy require significant leverage in order to be profitable? Does the strategy necessitate the use of leveraged derivatives contracts (futures, options, swaps) in order to make a return? These leveraged contracts can have heavy volatility characterises and thus can easily lead to margin calls. Do you have the trading capital and the temperament for such volatility?
  • Frequency – The frequency of the strategy is intimately linked to your technology stack (and thus technological expertise), the Sharpe ratio and overall level of transaction costs. All other issues considered, higher frequency strategies require more capital, are more sophisticated and harder to implement. However, assuming your backtesting engine is sophisticated and bug-free, they will often have far higher Sharpe ratios.
  • Volatility – Volatility is related strongly to the “risk” of the strategy. The Sharpe ratio characterises this. Higher volatility of the underlying asset classes, if unhedged, often leads to higher volatility in the equity curve and thus smaller Sharpe ratios. I am of course assuming that the positive volatility is approximately equal to the negative volatility. Some strategies may have greater downside volatility. You need to be aware of these attributes.
  • Win/Loss, Average Profit/Loss – Strategies will differ in their win/loss and average profit/loss characteristics. One can have a very profitable strategy, even if the number of losing trades exceed the number of winning trades. Momentum strategies tend to have this pattern as they rely on a small number of “big hits” in order to be profitable. Meanreversion strategies tend to have opposing profiles where more of the trades are “winners”, but the losing trades can be quite severe.
  • Maximum Drawdown – The maximum drawdown is the largest overall peak-to-trough percentage drop on the equity curve of the strategy. Momentum strategies are well known to suffer from periods of extended drawdowns (due to a string of many incremental losing trades). Many traders will give up in periods of extended drawdown, even if historical testing has suggested this is “business as usual” for the strategy. You will need to determine what percentage of drawdown (and over what time period) you can accept before you cease trading your strategy. This is a highly personal decision and thus must be considered carefully.
  • Capacity/Liquidity – At the retail level, unless you are trading in a highly illiquid instrument (like a small-cap stock), you will not have to concern yourself greatly with strategy capacity. Capacity determines the scalability of the strategy to further capital. Many of the larger hedge funds suffer from significant capacity problems as their strategies increase in capital allocation.
  • Parameters – Certain strategies (especially those found in the machine learning community) require a large quantity of parameters. Every extra parameter that a strategy requires leaves it more vulnerable to optimisation bias (also known as “curve-fitting”). You should try and target strategies with as few parameters as possible or make sure you have sufficient quantities of data with which to test your strategies on.
  • Benchmark – Nearly all strategies (unless characterised as “absolute return”) are measured against some performance benchmark. The benchmark is usually an index that characterises a large sample of the underlying asset class that the strategy trades in. If the strategy trades large-cap US equities, then the S&P500 would be a natural benchmark to measure your strategy against. You will hear the terms “alpha” and “beta”, applied to strategies of this type.

Notice that we have not discussed the actual returns of the strategy. Why is this? In isolation, the returns actually provide us with limited information as to the effectiveness of the strategy. They don’t give you an insight into leverage, volatility, benchmarks or capital requirements. Thus strategies are rarely judged on their returns alone. Always consider the risk attributes of a strategy before looking at the returns.

At this stage many of the Strategies found from your pipeline will be rejected out of hand, since they won’t meet your capital requirements, leverage constraints, maximum drawdown tolerance or volatility preferences. The strategies that do remain can now be considered for backtesting. However, before this is possible, it is necessary to consider one final rejection criteria – that of available historical data on which to test these strategies.

Evaluating Algo Trading Strategies

Read Also; Sourcing Algorithmic Trading Ideas

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top